
A Focused Web Spider Specialized for Turkish Language

Sercan DAĞDAŞ1, Göksel BİRİCİK2, Banu DİRİ2
1Garanti Technology, 2Yildiz Technical University Computer Engineering Department

1cesercandagdas@gmail.com, 2{goksel,banu}@ce.yildiz.edu.tr

Abstract

We present a focused web spider specialized
for Turkish language. We can select which classes
to focus by training the system with web pages of
the desired topics. Our flexible architecture gives
the opportunities to select which HTML tags to
scan, tune their weights, select keywords
originating from types, and adjust the minimum
length for the keywords. We achieved 70% overall
classification accuracy with an evaluation dataset
of 12 classes crawled from DMOZ directory. Our
system distinguishes the classes with numerous
training samples better than the ones with fewer
samples. We get better classification accuracies as
the training dataset grows bigger.

1. Introduction

Numerous amounts of web sites are being
rapidly created nowadays. Not just static content
but lots of documents, technical or nontechnical
articles, news, pictures, music are being shared on
the web, causing the information size to increase
dramatically. When information size increases, it
gets harder for us to find or reach the desired data.
The solution came in form of search engines,
which have been built to solve the need to find
valuable information.

Former examples of search engines were
AltaVista, WebCrawler.com, Lycos, Yahoo, etc.
These engines tracked different search strategies.
Some were good for a certain type of query;
however another type of query was not appropriate
for that search engine. Later on 1998, another
search engine called “Google” was developed by
Sergey Brin and Larry Page. Google enhanced old
search engines’ strategies by adding algorithms
developed by Brin and Page. These algorithms are
generally concerned with data mining, text
classification and indexing, they developed their
own PageRank algorithm [14].

Search engines work by storing information
about web pages. Most important component of a
search engine which retrieves content from web
pages is called “Spider”. Spider scans and
downloads web pages, then compresses and stores

them to disk. After the retrieval stage, indexer
component indexes these pages in a database and
prepares pages to user queries. Data retrieved from
web pages are stored in an index database for use
in later queries.

It is almost impossible to download and fetch
every single page on the web. The strategy to
solve this problem in our focused web spider is
just like any other hypertext crawler (whether for
the web, an intranet or other hypertext document
collection). The crawler begins with one or more
URLs that constitute a seed set. It picks a URL
(Uniform Resource Locator) from this seed set,
and then fetches the web page at that URL. The
fetched page is then parsed, to extract both the text
and the links from the page (each of which points
to another URL). The extracted text is fed to a text
indexer. The extracted links (URLs) are then
added to a URL frontier, which at all times
consists of URLs whose corresponding pages have
yet to be fetched by the crawler. Initially, the URL
frontier contains the seed set; as pages are fetched,
the corresponding URLs are deleted [1].

Downloaded web pages can be used for
different purposes on demand, including personal
queries, since web crawlers working on personal
computers can harvest documents on behalf of the
end users [2]; building a collection, as the
downloaded web pages may be used for different
purposes as well as they are looked up in search
engines (e.g., Bharat and Broder crawlers fetch
pages from the Yahoo! search engine continuously
to form a dictionary [3]); archiving, especially
taking the huge size of the web into consideration
(crawlers for archiving should be used with critical
performance optimizations [4]); gathering
statistics for the web, because deriving interesting
and practical statistical results from the enormous
dataset of crawled web pages is possible (e.g., the
proportion of 404-Page not found error pages to
the total number of crawled pages indicates a
statistical result [5]).

The first web crawler robot was coded by
Matthew Gray in 1993. Chakrabarti [4, 5], Ehrig
[6], Aggarwall [7], Diligenti [8] and Menczer [9]
are the pioneers of focused web crawling with
their initiative studies.

This paper is organized as follows. In Section 2
we introduce our focused web spider that is
specialized for Turkish language. Section 3
addresses experimental results derived from our
tests. In Section 4 we discuss the outcomes of our
application and conclude.

2. Structure and features of our focused
web spider

Focused web spider application has very
powerful features thanks to robust and accurate
algorithms as well as the easy-to-use user
interface. We developed our spider on a notebook
machine with 2.0 GHz Intel Core2Duo processor,
320 GB 5400 rpm HDD and 1.5 GB of RAM. In
this configuration average downloading and
scanning operations for a single web page takes
only 3 seconds.

We designed our focused web spider to work
with only Turkish language, so classification using
other languages is impossible, but architecture is
designed so flexible that another language add-on
can be implemented in a short time.

Naive Bayes Updateable feature of our
application provides more accuracy as the
application crawls the web. This means long term
usage of our spider will converge to a realistic
success rate. Another feature called flexible tag
point usage enables to add new tags and scores,
which gives the ability to tune the spider to the
tags in forthcoming HTML versions.

2.1. Naïve Bayes updatable

Our self-learning algorithm is designed to not
only use pre-trained vocabulary and class sets, but
also contains an option to use web pages that is
categorized in one of our trained classes. This
option enables our crawler to learn from its
experiences. Every newly categorized web page
increases the knowledge base of the spider and
further crawling may result in more proper results.

2.2. Naïve Bayes algorithm

We use Naive Bayes -a statistical classification
method- for our focused web spider. Naive Bayes
uses the combined probabilities of the words and
classes to determine the class of a document. Let X
be our document that we want to find which class
it belongs to. We can label the attributes of X as
X={x1, x2... xn}. Assume we have m classes in our
dataset as C= {C1, C2, Cm}. First we calculate
probabilities of X over classes with (Eq 1).

)(

)()/(
),(

XP

CPCXP
XCP ii

i  (1)





n

k
iki CxPCXP

1

)/()/((2)

Instead of calculating P(X/Ci), we can use (Eq

2) in order to reduce the processing cost on
calculations, assuming the attribute values of X are
independent.

It will be enough to calculate only the
nominator part of (Eq 1), since the denominator is
always the same for X. The class of X is predicted
by choosing maximum a posteriori classification
(MAP) value out of the calculated probabilities
using (Eq 3) [12].





n

k
ikcMAP CxPC

1

)/(maxarg (3)

2.3. URL search

We search URL’s of web sites as a focusing
hint in our focused web spider. This is especially
useful for focused crawling, because keywords we
desire generally lies in URL’s of web sites. Since
the web pages on sites are more frequently
generated by automated tools depending on the
content, URL’s are shaped with the topic
keywords of the page, delimited with underscore
(_) or dash (-) characters. This keyword
information is essential to categorize a web page
accurately, even if only scanning URLs do not
give attention to its content. Search engines
usually utilize general purpose crawlers that scan
URLs for a hint that may be a candidate to reside
along the top side of retrieved results. This search
strategy affects web sites’ position in overall
search results. Searching URLS of web sites also
gives our focused web spider more chance to
detect the keywords exposed especially by this
kind of sites.

2.4. HTML tag usage

Another challenging feature of our focused web
spider is using HTML tags as keys to achieve
more accurate classification results. We know that
web masters usually place their keywords in more
important tags like <title>, <meta>, <h1>, <h2>,
<h3>, etc. Our spider gives us option to define tag
weights, which are multipliers for HTML tags in
training phase. Users are also allowed to define
their own tags to fine tune the training parameters
in order to achieve even higher classification
accuracy. Our spider uses a database to store the
training information about the classes and
keywords. Classes table is a basic header table to
keep information for the trained classes.

2.5. Keywords table and HTML tag weight
calculation

Keywords table holds the root, count and
multiplier data of keywords. We only insert new
records if the root of the keyword is valid and its
count meets the defined criteria. The count field
holds information about how many times this root
keyword is found in this classes’ related
documents. For example, the root for the words
kedim and kediler is kedi. This keyword is hold in
a record in keyword table like “classId: 1,
rootKeyword: kedi, wCount: 2, multiplier: 1”.

The multiplier field holds information about a
word’s importance in documents of the training
set. Let us continue our example. Assume we have
a HTML document in our training set, with a title
tag like “<title> Kedi resimleri </title>”. If we
specify the weight of <title> tag as 16, multiplier
field is calculated using simple averaging as given
in (Eq 4).  resembles our multiplier and 
symbolizes wCount.

This field is the crucial key for our focused
web spider to tune importance of HTML tags to
categorize documents into classes. Careful and
intensive balancing of tag weights results in more
accurate classification.

 

6
3

1612

1











 newold
new (4)

2.6. Respect to robots exclusion protocol

As noted by Koster, since the use of web
crawlers is useful for a number of tasks, there are
also costs that one must face. The charges of using
Web crawlers include [12] network resources, as
crawlers require considerable bandwidth and
operate with a high degree of parallelism during a
long period of time; server overload, especially if
the frequency of accesses to a given server is too
high; poorly-written crawlers, which can crash
servers or routers, or which download pages they
cannot handle; personal crawlers that, if deployed
by too many users, can disrupt networks and Web
servers.

A partial solution to these problems is the
robots exclusion protocol, also known as the
robots.txt protocol that is a standard for
administrators to indicate which parts of their web
servers should not be accessed by crawlers. This
standard does not include a suggestion for the
interval of visits to the same server, even though
this interval is the most effective way of avoiding
server overload.

Our focused web spider has respect to web
sites’ crawling policies. We read the robots.txt file
found in the root folder of a web site’s URL and

do not retrieve pages indicated in robots exclusion
list of that web site. This policy also may prevent
the focused spider to enter an infinite loop
generally caused by the query string variables,
known as spider traps. Since our crawler do not
have a world-known name, our focused web
spider do not control useragent section for a
certain name such as google-bot but looks for a
line like “user-agent=*” that indicates all spiders
including this one should obey specified rules. A
fragment of the robots.txt file of Google web site
is as follows: User-agent: *

Allow: /searchhistory/
Disallow: /search
Disallow: /catalogs

2.7. Multi threading

Our focused web spider application has two
separate threads to increase the crawling speed and
make efficient use of hardware resources. A single
threaded crawler may lose critical times when
waiting for a page to be downloaded. During the
downloading time period, the central processing
unit remains idle. We know that network I/O can
be more time consuming than disk I/O. That’s
why our spider uses another thread to make
calculations for classification. In this architecture,
our second thread continues working on scheduled
tasks when the first thread waits for I/O.

3. Experimental Results

In this section we present our experimental
results. First we introduce our evaluation dataset.
Then we explain our testing parameters. Finally
we discuss the test results.

3.1. Evaluation Dataset

Evaluation dataset is prepared from web pages
under DMOZ [15] category World/Turkce.
World/Turkce category included 12342 web pages
in Turkish at the time we crawled. There are
twelve main categories in this set: Shopping,
News, Computers, Science, Recreation, Business,
Reference, Arts, Games, Health, Sports and
Society. For our test on heterogeneous dataset, we
used whole pages of our crawl. We split 33% of
pages in each class for testing, and 67% for
training. The train-test splitting of the dataset,
class labels and number of keywords obtained by
the training of the system with the Naïve Bayes
classifier mentioned in Section 2.2 are given in
Table 1.

To test our system on a homogeneous dataset,
we randomly choose 200 pages from each class
and split 150 for training, and 50 for testing.
Number of keywords obtained by the training of

the system with the Naïve Bayes classifier
mentioned in Section 2.2 is given in Table 2. Note
that this time we have 150 pages for training and
50 pages for testing in each class.

Table 1. Samples in the heterogeneous dataset
Class Labels # pages

train set
pages
test set

key-
words

Shopping (Sh) 368 184 213
News (N) 328 149 1432
Computers (C) 1413 706 2406
Science (Sc) 231 115 1339
Recreation (Rc) 378 189 1677
Reference (Rf) 518 259 1267
Arts (A) 616 307 2195
Games (G) 133 66 569
Health (H) 585 292 1920
Sports (S) 274 137 1247
Society (Soc) 777 388 2817
Business (B) 2622 1307 4320

Table 2. Number of keywords per class for the

homogeneous dataset
Class Labels # key-

words
Class Labels #key-

words
Shopping (Sh) 1365 Arts (A) 879
News (N) 949 Games (G) 612
Computers (C) 696 Health (H) 936
Science (Sc) 904 Sports (S) 870
Recreation (Rc) 983 Society (Soc) 898
Reference (Rf) 565 Business (B) 977

3.2. Testing parameters for evaluation

As mentioned in Section 2.4 and 2.5, we can
select which tags to use form the input pages in
training phase, as well as we can tune their
weights. Tags we chose to train the system for our
experimental tests and their tuned weights are
given in Table 3.

Our spider lets us to set the minimum keyword
length. We set this value to 3, in other words we
omit 1 and 2 letter words. Another parameter that
we can arrange is the type of keywords. We may
choose verbs, nouns, abbreviations, adjectives,
pronouns, exclamations or pronouns. In our tests
we only choose noun type keywords and excluded
other types.

Table 3. Chosen tags and their tuned weights for

experimental tests
Tag name Weight (Score)
URL 100
<title> 20
<meta> 10
<h1> 8
<h2> 4
<h3> 3

3.3. Test results

We use three different metrics to quantify our
test results. The calculation of precision, which is
also known as harvest rate and recall, is given in
(Eq 5). Macro-average F Measure is calculated
with (Eq 6). C is the number of classes. tp is the
number of true positives, fp is the number of false
positives and fn is the number of false negatives
for the samples predicted. The confusion matrix of
true/false positive/negative predicted samples is
given in Table 4.

fntptprfptptpp  , (5)

CFF
rp

rp
F

C

i
imacro

ii

ii
i 








1

,2 (6)

Confusion matrices of the test results are given in
Table 5 and Table 6 sequentially. Looking at the
recalls, we observe that computers and business
are classified most successfully, whilst shopping
and news are the worst classified ones. Results
show that shopping interferes with business, and
news interferes with society. The heterogeneous
dataset gives better results (0.71 F-measure, 70%
overall accuracy) than the homogeneous dataset
(0.59 F-measure, 59% overall accuracy) because it
has much more training samples.

Table 4. Confusion matrix for predictions

Actual class
C1 C2

Predicted
class

C1 tp fp
C2 fn tn

4. Conclusions

In this paper we present a focused web spider,
which is specialized for Turkish language. It is
possible to select which classes to focus by
training the system with a dataset of web pages in
the desired topics. Our flexible architecture gives
the opportunities to select which HTML tags to
scan, and tune their weights for the classes.
Moreover the users can select keywords
originating from verb, noun, abbreviation,
adjective, pronoun, or exclamation types, and
adjust the minimum length for the keywords.

On our evaluation tests we utilize a dataset
crawled from DMOZ directory in 12 classes. We
achieved 70% overall classification accuracy and
0.71 macro averaged F measure with this dataset.
We see that our system distinguishes the classes
with numerous training samples better than the
ones with fewer samples. One gets better
classification accuracies if the training set is
bigger.

5. References

[1] C. D. Manning, P. Raghavan and H.Schütze, “An
Introduction to Information Retrieval”, Cambridge
University Press, 2009.
[2] M. Chau, D. Zeng and H. Chen, “Personalized
Spiders for Web Search and Analysis”, Proc.the 1st
ACM-IEEE Joint Conference on Digital Libraries,
Roanoke, Virginia, USA, pp. 79-87, 2001.
[3] M.R. Henzinger, A. Heydon, et-al., “On Near-
uniform URL Sampling”, Proc. the 9th Intl. World-
Wide Web Conference ,Amsterdam, Netherlands, 2000.
[4] B. Kahle, “Preserving the Internet”, Scientific
America, 1997.
[5] M. Gray, “Internet Growth and Statistics: Credits
and Background”, http://www.mit.edu/~mkgray/net/
background.html, 1993.
[6] S. Chakrabarti, M. Berg, and B. Dom, “Focused
Crawling: A new Approach to Topic-specific Web
Resource Discovery”, In Proceedings of the 8th
International WWW Conference, Canada, 1999.
[7] S. Chakrabarti, K. Punera and M. Subramanyam,
“Accelerated focused crawling through online relevance
Feedback”, In WWW, 2002.

[8] M. Ehrig and A. Maedche, “Ontology-focused
Crawling of Web Documents”, In Proceeding of the
2003 ACM Symposium on Applied Computing, 2003.
[9] C. Aggarwal, F. Al-Garawi and P. Yu, “Intelligent
Crawling on the World Wide Web with Arbitrary
Predicates”, In Proceedings of the 10th International
World Wide Web Conference, Hog Kong, 2001.
[10] M. Diligenti, F. Coetzee, S. Lawrence, C. Giles and
M. Gori, “Focused Crawling Using Context Graphs”, In
Proceedings of the 26th International Conference on
Very Large Databases, Cairo, 2000.
[11] F. Menczer, G. Pant, P. Srinivasan and M. Ruiz,
“Evaluating Topic-driven Web Crawlers”, In
Proceedings of the 24th Annual International
ACM/SIGIR Conference, USA, 2001.
[12] T. M. Mitchell, Machine Learning, Mc.Graw-Hill,
1997.
[13] M. Koster, “A Standart for Robot Exclusion”,
http://www.robotstxt.org/wc/norobots.html, 1994.
[14] L. Page, S. Brin, M. Rajeev and T.Winograd, “The
pagerank citation ranking: Bringing order to the web.”,
Technical report, Stanford InfoLab, 1999.
[15] Directory Mozilla Project, http://www.dmoz.org,
2009.

Table 5. Confusion matrix of the results using the heterogeneous dataset

 Actual
 Sh N C Sc Rc Rf A G H S Soc B Recall

P
re

di
ct

ed

Sh 82 3 18 1 4 4 10 3 9 7 5 38 0.45
N 4 65 13 4 2 1 14 1 1 3 30 10 0.44
C 10 8 608 0 3 10 14 8 0 3 14 27 0.86
Sc 0 0 6 79 0 15 3 0 1 1 7 3 0.69
Rc 6 4 13 1 100 3 17 1 3 10 11 20 0.53
Rf 0 0 15 8 0 205 2 0 5 3 15 6 0.79
A 1 3 9 4 2 15 248 1 1 2 16 4 0.81
G 0 2 7 0 0 0 0 52 1 1 0 3 0.79
H 4 4 10 6 0 16 5 1 203 2 21 20 0.70
S 1 0 6 0 3 2 1 0 2 112 3 7 0.82

Soc 3 7 39 8 0 14 21 2 0 6 273 14 0.70
B 23 5 86 7 3 11 22 3 9 9 21 1108 0.85

Precision 0.61 0.64 0.73 0.67 0.85 0.69 0.69 0.72 0.86 0.70 0.66 0.88

Table 6. Confusion matrix of the results using the homogeneous dataset
 Actual
 Sh N C Sc Rc Rf A G H S Soc B Recall

P
re

di
ct

ed

Sh 29 3 4 1 6 1 2 0 3 0 0 1 0.58
N 5 29 0 1 1 1 0 0 1 4 6 2 0.58
C 2 3 29 1 0 3 0 3 0 1 4 4 0.58
Sc 0 2 1 29 1 7 2 1 2 1 4 0 0.58
Rc 3 1 0 1 35 1 4 0 0 3 1 1 0.70
Rf 1 0 2 11 0 33 1 0 0 1 1 0 0.66
A 4 3 1 4 2 2 31 0 0 0 1 2 0.62
G 2 3 2 1 0 0 2 37 0 2 1 0 0.74
H 2 2 0 3 0 2 0 1 35 1 3 1 0.70
S 5 2 1 1 6 0 1 4 1 27 2 0 0.54

Soc 0 3 4 7 1 3 5 2 4 1 19 1 0.38
B 12 0 6 1 1 1 4 0 0 1 1 23 0.46

Precision 0.45 0.57 0.58 0.48 0.66 0.61 0.60 0.77 0.76 0.64 0.44 0.66

