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Abstract 
 

We present a focused web spider specialized 
for Turkish language. We can select which classes 
to focus by training the system with web pages of 
the desired topics. Our flexible architecture gives 
the opportunities to select which HTML tags to 
scan, tune their weights, select keywords 
originating from types, and adjust the minimum 
length for the keywords. We achieved 70% overall 
classification accuracy with an evaluation dataset 
of 12 classes crawled from DMOZ directory. Our 
system distinguishes the classes with numerous 
training samples better than the ones with fewer 
samples. We get better classification accuracies as 
the training dataset grows bigger.  
 
1. Introduction 
 

Numerous amounts of web sites are being 
rapidly created nowadays. Not just static content 
but lots of documents, technical or nontechnical 
articles, news, pictures, music are being shared on 
the web, causing the  information size to increase 
dramatically. When information size increases, it 
gets harder for us to find or reach the desired data. 
The solution came in form of search engines, 
which have been built to solve the need to find 
valuable information. 

Former examples of search engines were 
AltaVista, WebCrawler.com, Lycos, Yahoo, etc. 
These engines tracked different search strategies. 
Some were good for a certain type of query; 
however another type of query was not appropriate 
for that search engine. Later on 1998, another 
search engine called “Google” was developed by 
Sergey Brin and Larry Page. Google enhanced old 
search engines’ strategies by adding algorithms 
developed by Brin and Page. These algorithms are 
generally concerned with data mining, text 
classification and indexing, they developed their 
own PageRank algorithm [14]. 

Search engines work by storing information 
about web pages. Most important component of a 
search engine which retrieves content from web 
pages is called “Spider”. Spider scans and 
downloads web pages, then compresses and stores 

them to disk. After the retrieval stage, indexer 
component indexes these pages in a database and 
prepares pages to user queries. Data retrieved from 
web pages are stored in an index database for use 
in later queries. 

It is almost impossible to download and fetch 
every single page on the web. The strategy to 
solve this problem in our focused web spider is 
just like any other hypertext crawler (whether for 
the web, an intranet or other hypertext document 
collection). The crawler begins with one or more 
URLs that constitute a seed set. It picks a URL 
(Uniform Resource Locator) from this seed set, 
and then fetches the web page at that URL. The 
fetched page is then parsed, to extract both the text 
and the links from the page (each of which points 
to another URL). The extracted text is fed to a text 
indexer. The extracted links (URLs) are then 
added to a URL frontier, which at all times 
consists of URLs whose corresponding pages have 
yet to be fetched by the crawler. Initially, the URL 
frontier contains the seed set; as pages are fetched, 
the corresponding URLs are deleted [1]. 

Downloaded web pages can be used for 
different purposes on demand, including personal 
queries, since web crawlers working on personal 
computers can harvest documents on behalf of the 
end users [2]; building a collection, as the 
downloaded web pages may be used for different 
purposes as well as they are looked up in search 
engines (e.g., Bharat and Broder crawlers fetch 
pages from the Yahoo! search engine continuously 
to form a dictionary [3]); archiving, especially 
taking the huge size of the web into consideration 
(crawlers for archiving should be used with critical 
performance optimizations [4]); gathering 
statistics for the web, because deriving interesting 
and practical statistical results from the enormous 
dataset of crawled web pages is possible (e.g., the 
proportion of 404-Page not found error pages to 
the total number of crawled pages indicates a 
statistical result [5]). 

The first web crawler robot was coded by 
Matthew Gray in 1993. Chakrabarti [4, 5], Ehrig 
[6], Aggarwall [7], Diligenti [8] and Menczer [9] 
are the pioneers of focused web crawling with 
their initiative studies. 



This paper is organized as follows. In Section 2 
we introduce our focused web spider that is 
specialized for Turkish language. Section 3 
addresses experimental results derived from our 
tests. In Section 4 we discuss the outcomes of our 
application and conclude. 
 
2. Structure and features of our focused 
web spider 
 

Focused web spider application has very 
powerful features thanks to robust and accurate 
algorithms as well as the easy-to-use user 
interface. We developed our spider on a notebook 
machine with 2.0 GHz Intel Core2Duo processor, 
320 GB 5400 rpm HDD and 1.5 GB of RAM. In 
this configuration average downloading and 
scanning operations for a single web page takes 
only 3 seconds. 

We designed our focused web spider to work 
with only Turkish language, so classification using 
other languages is impossible, but architecture is 
designed so flexible that another language add-on 
can be implemented in a short time. 

Naive Bayes Updateable feature of our 
application provides more accuracy as the 
application crawls the web. This means long term 
usage of our spider will converge to a realistic 
success rate. Another feature called flexible tag 
point usage enables to add new tags and scores, 
which gives the ability to tune the spider to the 
tags in forthcoming HTML versions. 
 
2.1. Naïve Bayes updatable 
 

Our self-learning algorithm is designed to not 
only use pre-trained vocabulary and class sets, but 
also contains an option to use web pages that is 
categorized in one of our trained classes. This 
option enables our crawler to learn from its 
experiences. Every newly categorized web page 
increases the knowledge base of the spider and 
further crawling may result in more proper results. 
 
2.2. Naïve Bayes algorithm 
 

We use Naive Bayes -a statistical classification 
method- for our focused web spider. Naive Bayes 
uses the combined probabilities of the words and 
classes to determine the class of a document. Let X 
be our document that we want to find which class 
it belongs to. We can label the attributes of X as 
X={x1, x2... xn}. Assume we have m classes in our 
dataset as C= {C1, C2, Cm}. First we calculate 
probabilities of X over classes with (Eq 1). 
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Instead of calculating P(X/Ci), we can use (Eq 

2) in order to reduce the processing cost on 
calculations, assuming the attribute values of X are 
independent. 

It will be enough to calculate only the 
nominator part of (Eq 1), since the denominator is 
always the same for X. The class of X is predicted 
by choosing maximum a posteriori classification 
(MAP) value out of the calculated probabilities 
using (Eq 3) [12]. 
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2.3. URL search 
 

We search URL’s of web sites as a focusing 
hint in our focused web spider. This is especially 
useful for focused crawling, because keywords we 
desire generally lies in URL’s of web sites. Since 
the web pages on sites are more frequently 
generated by automated tools depending on the 
content, URL’s are shaped with the topic 
keywords of the page, delimited with underscore 
(_) or dash (-) characters. This keyword 
information is essential to categorize a web page 
accurately, even if only scanning URLs do not 
give attention to its content. Search engines 
usually utilize general purpose crawlers that scan 
URLs for a hint that may be a candidate to reside 
along the top side of retrieved results. This search 
strategy affects web sites’ position in overall 
search results. Searching URLS of web sites also 
gives our focused web spider more chance to 
detect the keywords exposed especially by this 
kind of sites. 
 
2.4. HTML tag usage 
 

Another challenging feature of our focused web 
spider is using HTML tags as keys to achieve 
more accurate classification results. We know that 
web masters usually place their keywords in more 
important tags like <title>, <meta>, <h1>, <h2>, 
<h3>, etc. Our spider gives us option to define tag 
weights, which are multipliers for HTML tags in 
training phase. Users are also allowed to define 
their own tags to fine tune the training parameters 
in order to achieve even higher classification 
accuracy. Our spider uses a database to store the 
training information about the classes and 
keywords. Classes table is a basic header table to 
keep information for the trained classes. 
 



2.5. Keywords table and HTML tag weight 
calculation 
 

Keywords table holds the root, count and 
multiplier data of keywords. We only insert new 
records if the root of the keyword is valid and its 
count meets the defined criteria. The count field 
holds information about how many times this root 
keyword is found in this classes’ related 
documents. For example, the root for the words 
kedim and kediler is kedi. This keyword is hold in 
a record in keyword table like “classId: 1, 
rootKeyword: kedi, wCount: 2, multiplier: 1”. 

The multiplier field holds information about a 
word’s importance in documents of the training 
set. Let us continue our example. Assume we have 
a HTML document in our training set, with a title 
tag like “<title> Kedi resimleri </title>”. If we 
specify the weight of <title> tag as 16, multiplier 
field is calculated using simple averaging as given 
in (Eq 4).  resembles our multiplier and  
symbolizes wCount. 

This field is the crucial key for our focused 
web spider to tune importance of HTML tags to 
categorize documents into classes. Careful and 
intensive balancing of tag weights results in more 
accurate classification. 
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2.6. Respect to robots exclusion protocol 
 

As noted by Koster, since the use of web 
crawlers is useful for a number of tasks, there are 
also costs that one must face. The charges of using 
Web crawlers include [12] network resources, as 
crawlers require considerable bandwidth and 
operate with a high degree of parallelism during a 
long period of time; server overload, especially if 
the frequency of accesses to a given server is too 
high; poorly-written crawlers, which can crash 
servers or routers, or which download pages they 
cannot handle; personal crawlers that, if deployed 
by too many users, can disrupt networks and Web 
servers. 

A partial solution to these problems is the 
robots exclusion protocol, also known as the 
robots.txt protocol that is a standard for 
administrators to indicate which parts of their web 
servers should not be accessed by crawlers. This 
standard does not include a suggestion for the 
interval of visits to the same server, even though 
this interval is the most effective way of avoiding 
server overload. 

Our focused web spider has respect to web 
sites’ crawling policies. We read the robots.txt file 
found in the root folder of a web site’s URL and 

do not retrieve pages indicated in robots exclusion 
list of that web site. This policy also may prevent 
the focused spider to enter an infinite loop 
generally caused by the query string variables, 
known as spider traps. Since our crawler do not 
have a world-known name, our focused web 
spider do not control useragent section for a 
certain name such as google-bot but looks for a 
line like “user-agent=*” that indicates all spiders 
including this one should obey specified rules. A 
fragment of the robots.txt file of Google web site 
is as follows: User-agent: * 

Allow: /searchhistory/ 
Disallow: /search 
Disallow: /catalogs 

 
2.7. Multi threading 
 

Our focused web spider application has two 
separate threads to increase the crawling speed and 
make efficient use of hardware resources. A single 
threaded crawler may lose critical times when 
waiting for a page to be downloaded. During the 
downloading time period, the central processing 
unit remains idle. We know that network I/O can 
be more time consuming than disk I/O. That’s 
why our spider uses another thread to make 
calculations for classification. In this architecture, 
our second thread continues working on scheduled 
tasks when the first thread waits for I/O. 
 
3. Experimental Results 
 

In this section we present our experimental 
results. First we introduce our evaluation dataset. 
Then we explain our testing parameters. Finally 
we discuss the test results.  
 
3.1. Evaluation Dataset 
 

Evaluation dataset is prepared from web pages 
under DMOZ [15] category World/Turkce. 
World/Turkce category included 12342 web pages 
in Turkish at the time we crawled. There are 
twelve main categories in this set: Shopping, 
News, Computers, Science, Recreation, Business, 
Reference, Arts, Games, Health, Sports and 
Society. For our test on heterogeneous dataset, we 
used whole pages of our crawl. We split 33% of 
pages in each class for testing, and 67% for 
training. The train-test splitting of the dataset, 
class labels and number of keywords obtained by 
the training of the system with the Naïve Bayes 
classifier mentioned in Section 2.2 are given in 
Table 1.  

To test our system on a homogeneous dataset, 
we randomly choose 200 pages from each class 
and split 150 for training, and 50 for testing. 
Number of keywords obtained by the training of 



the system with the Naïve Bayes classifier 
mentioned in Section 2.2 is given in Table 2. Note 
that this time we have 150 pages for training and 
50 pages for testing in each class.  

 
Table 1. Samples in the heterogeneous dataset 
Class Labels # pages 

train set 
# pages 
test set 

# key- 
words 

Shopping (Sh) 368 184 213 
News (N) 328 149 1432 
Computers (C) 1413 706 2406 
Science (Sc) 231 115 1339 
Recreation (Rc) 378 189 1677 
Reference (Rf) 518 259 1267 
Arts (A) 616 307 2195 
Games (G) 133 66 569 
Health (H) 585 292 1920 
Sports (S) 274 137 1247 
Society (Soc) 777 388 2817 
Business (B) 2622 1307 4320 

 
Table 2. Number of keywords per class for the 

homogeneous dataset 
Class Labels # key-

words 
Class Labels #key-

words
Shopping (Sh) 1365 Arts (A) 879 
News (N) 949 Games (G) 612 
Computers (C) 696 Health (H) 936 
Science (Sc) 904 Sports (S) 870 
Recreation (Rc) 983 Society (Soc) 898 
Reference (Rf) 565 Business (B) 977 

 
3.2. Testing parameters for evaluation 
 

As mentioned in Section 2.4 and 2.5, we can 
select which tags to use form the input pages in 
training phase, as well as we can tune their 
weights. Tags we chose to train the system for our 
experimental tests and their tuned weights are 
given in Table 3.  

Our spider lets us to set the minimum keyword 
length. We set this value to 3, in other words we 
omit 1 and 2 letter words. Another parameter that 
we can arrange is the type of keywords. We may 
choose verbs, nouns, abbreviations, adjectives, 
pronouns, exclamations or pronouns. In our tests 
we only choose noun type keywords and excluded 
other types.  

 
Table 3. Chosen tags and their tuned weights for 

experimental tests 
Tag name Weight (Score) 
URL 100 
<title> 20 
<meta> 10 
<h1> 8 
<h2> 4 
<h3> 3 

3.3. Test results 
 

We use three different metrics to quantify our 
test results. The calculation of precision, which is 
also known as harvest rate and recall, is given in 
(Eq 5). Macro-average F Measure is calculated 
with (Eq 6). C is the number of classes. tp is the 
number of true positives, fp is the number of false 
positives and fn is the number of false negatives 
for the samples predicted. The confusion matrix of 
true/false positive/negative predicted samples is 
given in Table 4.  
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Confusion matrices of the test results are given in 
Table 5 and Table 6 sequentially. Looking at the 
recalls, we observe that computers and business 
are classified most successfully, whilst shopping 
and news are the worst classified ones. Results 
show that shopping interferes with business, and 
news interferes with society. The heterogeneous 
dataset gives better results (0.71 F-measure, 70% 
overall accuracy) than the homogeneous dataset 
(0.59 F-measure, 59% overall accuracy) because it 
has much more training samples. 

 
Table 4. Confusion matrix for predictions 

 
Actual class 
C1 C2 

Predicted 
class 

C1 tp fp 
C2 fn tn 

 
4. Conclusions 
 

In this paper we present a focused web spider, 
which is specialized for Turkish language. It is 
possible to select which classes to focus by 
training the system with a dataset of web pages in 
the desired topics. Our flexible architecture gives 
the opportunities to select which HTML tags to 
scan, and tune their weights for the classes. 
Moreover the users can select keywords 
originating from verb, noun, abbreviation, 
adjective, pronoun, or exclamation types, and 
adjust the minimum length for the keywords.  

On our evaluation tests we utilize a dataset 
crawled from DMOZ directory in 12 classes. We 
achieved 70% overall classification accuracy and 
0.71 macro averaged F measure with this dataset. 
We see that our system distinguishes the classes 
with numerous training samples better than the 
ones with fewer samples. One gets better 
classification accuracies if the training set is 
bigger.  
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Table 5. Confusion matrix of the results using the heterogeneous dataset 

  Actual 
  Sh N C Sc Rc Rf A G H S Soc B Recall 

P
re

di
ct

ed
 

Sh 82 3 18 1 4 4 10 3 9 7 5 38 0.45 
N 4 65 13 4 2 1 14 1 1 3 30 10 0.44 
C 10 8 608 0 3 10 14 8 0 3 14 27 0.86 
Sc 0 0 6 79 0 15 3 0 1 1 7 3 0.69 
Rc 6 4 13 1 100 3 17 1 3 10 11 20 0.53 
Rf 0 0 15 8 0 205 2 0 5 3 15 6 0.79 
A 1 3 9 4 2 15 248 1 1 2 16 4 0.81 
G 0 2 7 0 0 0 0 52 1 1 0 3 0.79 
H 4 4 10 6 0 16 5 1 203 2 21 20 0.70 
S 1 0 6 0 3 2 1 0 2 112 3 7 0.82 

Soc 3 7 39 8 0 14 21 2 0 6 273 14 0.70 
B 23 5 86 7 3 11 22 3 9 9 21 1108 0.85 

Precision 0.61 0.64 0.73 0.67 0.85 0.69 0.69 0.72 0.86 0.70 0.66 0.88  
 

Table 6. Confusion matrix of the results using the homogeneous dataset 
  Actual 
  Sh N C Sc Rc Rf A G H S Soc B Recall 

P
re

di
ct

ed
 

Sh 29 3 4 1 6 1 2 0 3 0 0 1 0.58 
N 5 29 0 1 1 1 0 0 1 4 6 2 0.58 
C 2 3 29 1 0 3 0 3 0 1 4 4 0.58 
Sc 0 2 1 29 1 7 2 1 2 1 4 0 0.58 
Rc 3 1 0 1 35 1 4 0 0 3 1 1 0.70 
Rf 1 0 2 11 0 33 1 0 0 1 1 0 0.66 
A 4 3 1 4 2 2 31 0 0 0 1 2 0.62 
G 2 3 2 1 0 0 2 37 0 2 1 0 0.74 
H 2 2 0 3 0 2 0 1 35 1 3 1 0.70 
S 5 2 1 1 6 0 1 4 1 27 2 0 0.54 

Soc 0 3 4 7 1 3 5 2 4 1 19 1 0.38 
B 12 0 6 1 1 1 4 0 0 1 1 23 0.46 

Precision 0.45 0.57 0.58 0.48 0.66 0.61 0.60 0.77 0.76 0.64 0.44 0.66  
 


