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Abstract

Feature selection and extraction are frequently used solutions to overcome the curse of dimensionality in

text classification problems. We introduce an extraction method that summarizes the features of the document

samples, where the new features aggregate information about how much evidence there is in a document, for

each class. We project the high dimensional features of documents onto a new feature space having dimensions

equal to the number of classes in order to form the abstract features. We test our method on 7 different

text classification algorithms, with different classifier design approaches. We examine performances of the

classifiers applied on standard text categorization test collections and show the enhancements achieved by

applying our extraction method. We compare the classification performance results of our method with popular

and well-known feature selection and feature extraction schemes. Results show that our summarizing abstract

feature extraction method encouragingly enhances classification performances on most of the classifiers when

compared with other methods.

Key Words: Dimensionality reduction, feature extraction, preprocessing for classification, probabilistic

abstract features

1. Introduction

Assigning similar items into given categories is known as classification. For many years, people have been
designing several classification or categorization systems for different disciplines including library sciences,
biology, medical sciences, and artificial intelligence. Universal schemes covering all subjects like Dewey, Library
of Congress, and Bliss are used in library classification [1]. Taxonomies such as Linnaean taxonomy perform
biological classification. The ICD9-CM, ICF, and ICHI are examples of medical classifications. Statistical
classification methods like K-nearest neighbors, naive Bayes, decision trees, and support vector machines are
used in artificial intelligence and pattern recognition fields. Applications of classification and categorization in
pattern recognition include speech and image recognition, document classification, personal identification, and
many other tasks.

A sample subject of classification is represented by a set of features known as the feature vector.
Depending on the type of samples and the field of application, the features might be numerical, nominal,
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or string. For instance, if we represent images, the feature vector consists of pixel values on the spatial domain.
DNA or protein sequences form the feature vector for bioinformatics. Term occurrence frequencies can be used
to represent textual data. If we have a dataset of time series, continuous values are the features for forecasting
or regression.

Most of the research and work areas require a vast number of features to describe the data in practice.
This requirement increases the cost of computation and decreases performance. One typical example is text
classification, defined as the grouping of documents into a fixed number of predefined categories [2]. The

information retrieval vector space is frequently used in text classification [3]. In vector space, we represent
the documents with terms, which is also known as the bag-of-words model. The nature of the bag-of-words
approach causes a very high dimensional and sparse feature space. As the dimensionality increases, the data
become sparser. It is hard to build an efficient model for text classification in this high dimensional feature
space. Due to this problem, dimension reduction has become one of the key problems of textual information
processing and retrieval [4].

Dimension reduction is beneficial as it can eliminate irrelevant features or the curse of dimensionality.
There are 2 approaches for reducing dimensions of the feature space. The first approach, feature selection, selects
a subset of the original features as the new features, depending on a selection criterion. The second approach,
feature extraction, reduces the dimension by creating new features by combining or projecting the original
features. In this paper, we propose a supervised feature extraction method, which produces the extracted
features by combining the effects of the input features over classes.

The paper begins with an introduction to dimension reduction and a quick review of the most widely
known and used dimension reduction methods. After that, we introduce our feature extraction method, which
summarizes the features of the document samples, where the new features aggregate information about how
much evidence there is in a document, for each class. We test our method using standard text collections, using
7 different classification algorithms that belong to various design approaches. We examine the performances of
the classifiers on the selected datasets and show the enhancements achieved by applying our extraction method,
in comparison with the widely used feature selection and feature extraction methods. The paper also discusses
how much evidence for classes is in the training samples by visualizing the abstract features derived from the
evaluation datasets.

2. Previous work: dimensionality reduction techniques

The dimension of the data is defined as the number of variables that are measured on each observation in the
statistics. We can give the same definition as the number of features that the samples of a dataset contain.
Assume that we have an m-dimensional random variable x = (x1, ..., xm). The purpose of dimension reduction

is to find a representation for the variable with reduced dimensions [5], r = (r1, ..., rk) with k ≤ m .

We can follow 2 major ways to reduce dimensions of the feature vector. The first solution is feature
selection, which derives a new subset of the original feature set. The second way to reduce dimensions is feature
extraction, in which a new feature set with smaller dimensions is formed in a new feature space. Both approaches
may be linear or nonlinear, depending on the linear separability of the classes.

Feature selection algorithms evaluate the input features using different techniques to output a smaller
subset. Since the number of the selected features is smaller than the number of the originals, feature selection
results in a lower dimensional feature space. The selection procedure is based on either the evaluation of features
on a specific classifier to find the best subset [6], or the ranking of features by a metric and elimination of the ones
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that are below the threshold value [7]. Feature selection methods depending on the former approach are known
as wrapper methods, and methods depending on the latter approach are called filter methods. Using fewer but
more distinctive features reduces the cost of pattern recognition algorithms’ computing power requirements and
enhances the results [8].

Examples of linear feature selection methods are document frequency, chi-squared statistic, information
gain, mutual information, and correlation coefficient [9]. We already know that the information gain, mutual
information, and correlation coefficient methods share the same underlying entropic idea and select features via
scoring. Nonlinear feature selection methods like relief and nonlinear kernel multiplicative updates are not used
as much as the linear methods, because they are often complex to implement and/or computationally expensive

[10].

Feature extraction algorithms map the multidimensional feature space to a lower dimensional space. This
is achieved by combining terms to form a new description for the data with sufficient accuracy [11]. Since the
projected features are transformed into a new space, they no longer resemble the original feature set, but extract
relevant information from the input set. It is expected that the features would carry sufficient information from
the input data to perform machine learning and pattern recognition tasks accurately, e.g., text classification.
Mapping to a smaller space simplifies the amount of resources required to describe a large set of data [12],
especially one having numerous features. Making use of feature extraction in vector space models is quite
reasonable because it has a high dimensional and sparse, redundant structure, which requires a large amount
of computation power.

The most widely known linear feature extraction methods are principal component analysis (PCA) and,

especially for textual data, latent semantic analysis (LSA). There are many other methods discussed, including

multidimensional scaling (MDS), learning vector quantization (LVQ), and linear discriminant analysis (LDA).

Local linear embedding (LLE), self-organizing maps (SOM), and isometric feature mapping (ISOMAP) are

examples of nonlinear feature extraction methods, as well [13].

Aside from the ones we named above, there are many types of feature selection and feature extraction
methods implemented in the literature. In this section we only introduce the most commonly used and widely
known methods, which we also choose to compare with our abstract feature extractor. We choose the chi-
squared and correlation coefficient methods as the feature selection methods, because these methods produce
better feature subsets than document frequency [14]. Information gain and mutual information are excluded
since they share the same underlying entropic idea as the correlation coefficient method. We choose PCA, LSA,
and LDA as the feature extraction methods, because PCA is known as the main feature extraction method and
LSA is frequently used in text mining tasks. LDA is taken into account for comparison, as it is a supervised
method like the proposed abstract feature extractor. The other mentioned methods are excluded, as they are
used in different application fields instead of text classification.

2.1. Chi-squared feature selection

The chi-squared is a popular feature selection method that evaluates features individually by computing chi-
squared statistics with respect to the classes [15]. This means that the chi-squared score for a term in a class
measures the dependency between that term and that class. If the term is independent from the class, then its
score is equal to 0.

A term with a higher chi-squared score is more informative. For a dataset consisting of N samples, the
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chi-squared score χ2 for a variable v in a class ci is defined in Eq. (1) [16]. We give dependency tuples in
Table 1.

χ2 (t, ci) =
N [P (t, ci)P (t̄, c̄i) − P (t, c̄i)P (t̄, ci)]

2

P (t)P (t̄)P (ci)P (c̄i)
(1)

2.2. Correlation coefficient feature selection

The correlation coefficient is in fact a variant of chi-squared, where cc 2 = χ2 . This method evaluates the
worthiness of a subset of features by considering the individual predictive ability of each term along with the
degree of redundancy between them [17]. The preferred subset of features is the one having high correlation
within the class and low correlation between different classes.

For a dataset consisting of N samples, the correlation coefficient cc for a variable v in a class ci is
defined in Eq. (2) [16]. We give dependency tuples in Table 1.

cc (t, ci) =

√
N [P (t, ci)P (t̄, c̄i) − P (t, c̄i)P (t̄, ci)]√

P (t)P (t̄)P (ci)P (c̄i)
(2)

Table 1. Dependency tuples for the discussed feature selection methods.

Membership in ci Nonmembership in ci

Presence of t (t, ci) (t, c̄i)
Absence of t (t̄, ci) (t̄, c̄i)

2.3. Singular value decomposition-based methods

Before introducing PCA and LSA, we briefly describe the singular value decomposition (SVD) process as it is
used in both methods.

Let A be an m × n real matrix, where m ≥ n . We can rewrite A as the product of an m × n column-

orthogonal matrix U(UT U = I), an n× n diagonal matrix Λ with positive or zero elements (the singular

values) in descending order (λ 1 ≥ λ 2 ≥ . . . ≥ λ n > 0), and the transpose of an n × n orthogonal matrix

V (V T V = I), as in Eq. (3). This decomposition is referred to as SVD.

A = UΛV T (3)

We can prove Eq. (3) by defining U , Λ, and V . If A is an m× n matrix, then AT A is an n× n symmetrical

matrix. This means that we can identify the eigenvectors and eigenvalues for AT A as the columns of V and
the squared diagonal elements of Λ (which are proven to be nonnegative as they are squared), respectively. Let

λ be an eigenvalue of AT A and x be the corresponding eigenvector. Defining Eq. (4) gives us Eq. (5).

‖Ax‖2 = xT AT Ax = λxT x = λ ‖x‖2 (4)

λ =
‖Ax‖2

‖x‖2
≥ 0 (5)

If we order the eigenvalues of AT A and define the matrix composed of the corresponding eigenvectors V , we
can define the singular values with Eq. (6).

σj =
√

λj , j = 1, ..., n (6)
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If the rank of A is r , then the rank of AT A is also r . Because AT A is symmetrical, its rank equals the number
of positive nonzero eigenvalues. This proves that σ 1 ≥ σ 2 ≥ . . . ≥ σ r > 0 and σ r+1 = σ r+2 =. . .= σ n

= 0. Assuming V1 = (v1 ,v2 ,. . . ,vr), V2 = (vr+1 , vr+2 ,. . . ,vn), and Λ 1 as an r × r diagonal matrix, we can

define Λ and A with Eqs. (7) and (8).

Λ =
[

Λ1 0
0 0

]
(7)

I = V V T = V1V
T
1 + V2V

T
2

A = AI = AV1V
T
1 + AV2V

T
2 = AV1V

T
1

(8)

Now we will show that AV = UΛ. For the first r columns, we can write Av j = σ juj and define U1 =

(u1 ,u2 ,. . . ,ur), AV 1 = U1 Λ 1 . The rest of the m-r dimensional orthonormal column vectors can be defined

with U2 = (ur+1 , ur+2 ,...,um). As U = (U1 U2), we can rewrite Eq. (3) with Eq. (9). Solving Eq. (9) proves

that A= UΛV T , as given in Eq. (10).

UΛV T =
[

U1 U2

] [
Λ1 0

0 0

][
V T

1

V T
2

]
(9)

UΛV T = U1Λ1V
T
1

= AV1V
T
1

= A

(10)

We state that both PCA and LSA depend on SVD. The eigen-decomposed input matrix makes the difference
between these methods. Using SVD, the covariance matrix is decomposed in PCA, while the term-document
matrix is decomposed in LSA. In fact, PCA and LSA are equivalent if the term-document matrix is centered.

2.3.1. Principal component analysis

PCA transforms correlated variables into a smaller number of correlated variables, which are known as the
principal components. Invented by Pearson in 1901, it is generally used for exploratory data analysis [18].
PCA is used for feature extraction by retaining the characteristics of the dataset that contribute most to its
variance, by keeping lower order principals, which tend to have the most important aspects of the data. This
is accomplished by a projection into a new hyperplane using eigenvalues and eigenvectors. The first principal
component is the linear combination of the features with the largest variance or, in other words, the eigenvector
with the largest eigenvalue. The second principal component has a smaller variance and is orthogonal to the first
one. There are as many eigenvectors as the number of the original features, which are sorted with the highest
eigenvalue first and the lowest eigenvalue last. Usually, 95% variance coverage is used to reduce dimensions
while keeping the most important characteristics of the dataset.

Finding the principal components depends on the SVD of the covariance matrix Σ. We can write the
covariance matrix Σ as in Eq. (11), where Λ is the diagonal matrix of the ordered eigenvalues and U is a p×p

orthogonal matrix of the eigenvectors. The principal components obtained by SVD are the p rows of the p× n

matrix S , as shown in Eq. (12). The appropriate number of principal components can be selected to describe
the overall variation with desired accuracy.

Σ = UΛUT (11)
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S = UT X (12)

PCA is a popular technique in pattern recognition, but its applications are not very common because it is not
optimized for class separability [19]. It is widely used in image processing disciplines [8].

2.3.2. Latent semantic analysis

Rather than dimension reduction, LSA is known as a technique in natural language processing. Patented in
1988, LSA analyzes relationships between a document set and the terms they contain. LSA produces a set of
concepts, which is smaller in size than the original set, related to documents and terms [20]. LSA uses SVD to
find the relationships between documents. Given a term-document matrix X , the SVD breaks down X into a
set of 3 smaller components, as:

X = UΣV T . (13)

If we represent the correlations between terms over documents with XX T , and the correlations between

documents over terms with XT X , we can also show these matrices with Eqs. (14) and (15).

XXT = UΣΣT UT (14)

XT X = V ΣT ΣV T (15)

When we select k singular values from Σ and the corresponding vectors from U and V matrices, we get the
rank k approximation for X with a minimal error. This approximation can be seen as a dimension reduction.

If we recombine Σ, U , and V and formX̂ , we can use it again as a lookup grid. The matrix we get back is an
approximation of the original one, which we can show with Eq. (16). The features extracted with LSA lie in
the orthogonal space.

X̂k = UkΣkV T
k (16)

LSA is mostly used for page retrieval systems and document clustering purposes. It is also used for document
classification or information filtering. Many algorithms utilize LSA in order to improve performance by working
in a less complex hyperspace. LSA requires relatively high computational power and memory because the
method utilizes complex matrix calculations using SVD, especially when working on datasets having thousands
of documents. There is an algorithm for fast SVD on large matrices using low memory [21]. These improvements
make the process easier and ensure extensive usage.

2.4. Linear discriminant analysis

LDA reveals a linear combination of features to model the difference between the classes for separation. The
resulting combination can be used for dimension reduction. LDA tries to compute a transformation that
maximizes the ratio of the between-class variance to the within-class variance. The class separation in direction
wcan be calculated with Eq. (17) using the between-class scatter matrix Σ B , defined in Eq. (18), and the

within-class scatter matrix Σ W , defined in Eq. (19) [22]. For Eqs. (18) and (19), μ c is the mean of class c

and μ is the mean of class means.

S =
wT ΣBw

wT ΣW w
(17)
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ΣB =
∑

c

(μc − μ)(μc − μ)T (18)

ΣW =
∑

c

∑
i∈c

(xi − μc)(xi − μc)T (19)

The transformation computed by LDA maximizes Eq. (17). If w is an eigenvector of Σ−1
W ΣB , then the class

separations are equal to the eigenvalues. We can give the linear transformation by a matrix U , where the

columns consist of the eigenvectors of Σ−1
W ΣB , as in Eq. (20). The eigenvectors obtained by solving Eq. (21)

can be used for dimension reduction as they identify a vector subspace that contains the variability between
features. ⎡

⎢⎢⎢⎢⎣
b1

b2

...

bK

⎤
⎥⎥⎥⎥⎦ =

⎡
⎢⎢⎢⎢⎣

uT
1

uT
2

...

uT
K

⎤
⎥⎥⎥⎥⎦ (x − μ) = UT (x − μ) (20)

ΣBuk = λkΣwuk (21)

3. Abstract feature extraction algorithm

The method we provide, the abstract feature extractor (AFE), is a supervised feature extraction algorithm that
produces the extracted features by combining the effects of the input features over classes. Thus, the number
of resulting features is equal to the number of classes. The AFE differs from most of the feature extraction
methods as it does not use SVD on the feature vectors. Input features are projected to a suppositious feature
space using the probabilistic distribution of the features over classes. We project the probabilities of the features
to classes and sum up these probabilities to get the impact of each feature to each class.

Assume we have a total of I features in J samples within K classes. Let ni,j be the number of occurrences

of feature fi in sample sj and let Ji be the total number of samples that contain fi in the entire dataset. Since
we focus on text classification, our samples are documents, and features are the terms in documents. When
documents and terms are involved, ni,j is the term frequency of fi in sj . Here we list the steps of the AFE.

1. Calculate nc i,k , the total number of occurrences of fi in samples that belong to class ck , with:

nci,k =
∑

j

ni,j, sj ∈ ck . (22)

2. Calculate wi,k
1, the weight of fi that affects class ck , with:

wi,k = log (nci,k + 1) × log
(

J

Ji

)
. (23)

3. Repeat for all of the samples:

1This weighting is similar to term frequency-inverse document frequency; the difference is in the frequency calculations of the
features. We calculate the feature frequencies not for each sample in the dataset individually, but for all of the samples in ck that
contain fi . This can be seen as calculating in-class frequencies of the feature set. The results are the weights of the input features.
These weights indicate how much a feature affects a class.
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Calculate Yj,k , the total effect of features in sample sj over class ck , with:

Yj,k =
∑

i

wi,k, fi ∈ sj . (24)

4. Normalize the reduced K features AF j,k of sj with:

AFj,k =
Yj,k∑

k

Yj,k
. (25)

At the end, we have K extracted features in hand for our samples. The representation is formed in a reduced
matrix with J rows (one row per sample) and K columns (number of extracted features equal to the number

of classes). That is, features are projected onto a new feature space with dimensions equal to the number of
classes.

It is possible to observe the mapping of the AFE on a document-word matrix of a given dataset. Assume
we have J documents in K classes and a total of I words in our training set. We define the J×I document-word
matrix X and the J×K document-class matrix Y weighted using wi,k in Eq. (23). The AFE projects features

using XT Y with column normalization, which represents the word-class distribution matrix. The bag-of-words
representation of the training document matrix X and each test document v could then be projected onto the

new space as XX T Y and vX T Y , respectively, again with column normalization. Since the overall operation
is a linear mapping between finite-dimensional vector spaces, the normalization process breaks linearity as it
depends on the inputs, X or v . Thus, original features cannot be linearly reconstructed from extracted abstract
features.

The main difference from other popular feature extraction methods is that the AFE requires a labeled
dataset to form the resulting projection space. Instead of utilizing a ranking strategy to choose the most
distinguishing extracted features, the method depends on the number of classes because the main idea is to
find the probabilistic distribution of input features over the classes. Once the distribution is calculated using
Eqs. (22) and (23), we can easily produce extracted features for the samples in the dataset using Eqs. (24) and

(25). The extracted K features AF k for a sample sj can be seen as the membership probabilities of sj to K

classes.

3.1. Discussion on term weighting

Assigning weights to terms is the key point in information retrieval and text classification [23]. Therefore, many
weighting schemes are presented in the literature. Term weighting can be as simple as binary representation or
as detailed as a blend of term and dataset existence probabilities derived from complex information theoretic
underlying concepts. New approaches like term frequency-relevance frequency (TFRF) [24] show that it is
better to award the terms with higher frequencies in the positive category and penalize the terms with higher
frequencies in the negative category. More or less, term frequency-inverse document frequency (TFIDF) is the

most widely known and used weighting method, and it is still even comparable with novel methods [24]. We
use TFIDF to weight the terms in term-document matrices of our evaluation datasets. However, the notion of
TFRF inspired us to weight the effects of terms on the classes as well.

In the AFE, we combine the in-class term frequencies given in Eq. (22) with inverse document frequencies

and use this scheme to weight the effects of terms on the classes, as in Eq. (23). Using in-class term frequencies
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BİRİCİK, DİRİ, SÖNMEZ: Abstract feature extraction for text classification,

shares the idea of TFRF. A recent study on concise semantic analysis (CSA) [22] modeled the term vectors in a
similar way to the AFE, but term and document weighting factors differed. Moreover, CSA creates features as
much as concepts, which have to be determined before the process. The number of extracted features with the
AFE is as much as the number of classes, which is an already known number. Even if the number of concepts
would be selected equal to the number of classes, the resulting features of CSA and the AFE are different since
the weightings are different and the AFE executes an additional mapping.

4. Materials and methods

In this section we introduce our evaluation datasets and dimension reduction methods that we choose to compare
with the AFE. We also introduce the selected classification algorithms and their parameters.

4.1. Selected datasets as evaluation material

We test our AFE method and compare it with other methods by examining the performances of classifiers

applied on standard textual data. The first dataset is Reuters-215782 and the second is the reduced version of

the 20 Newsgroups dataset, which is known as the 20 Newsgroups Mini3 dataset. Both selected datasets are
known as the standard test collections for text categorization. We use 2 ports of the Reuters-21578 dataset,
with the details described in this section.

In the first Reuters dataset port, we choose the news that contains only one topic label and body text as
our samples. In order to be as fair as possible, we choose our samples from the classes that have an approximately
equal number of samples. To achieve this, we apply a filter on the number of samples each class contains, we
calculate the mean and standard deviation for the distribution of samples among the classes, and then we filter
this distribution with a box-plot with the center μ and boundaries (±0 .2 × σ ). The classes having a number
of samples in this interval are chosen for evaluation. As a result, the chosen dataset of Reuters consists of 1623
samples in 21 classes. The selected classes for classification and the number of training samples within them
are listed in Table 2. We choose 10-fold cross validation for this dataset for the test results.

Table 2. Distribution of the samples among the selected 21 classes of the Reuters dataset.

Classes Number of Classes Number of Classes Number of
samples samples samples

Alum 48 Gnp 115 Nat-gas 48
Bop 46 Gold 111 Oilseed 78

Cocoa 58 Ipi 45 Reserves 50
Coffee 124 Iron-steel 51 Rubber 40
Copper 57 Jobs 47 Ship 194

Cpi 75 Livestock 55 Sugar 144
Dlr 34 Money-supply 110 oil 93

The second Reuters dataset port is the standard ModApte-10 split. Instead of cross validation, we use
the standard train/test splits of Reuters ModApte-10. Reuters is known as an extremely skewed dataset. This
port of the Reuters dataset is chosen to prove that the AFE works well both on homogeneous and heterogeneous
data.

2Dataset is retrieved from http://www.daviddlewis.com/resources/testcollections/reuters21578
3Dataset is retrieved from http://kdd.ics.uci.edu/databases/20newsgroups
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The original 20 Newsgroups dataset consists of 20,000 messages taken from 20 different Usenet news-
groups. The characteristic of the dataset is known as some of the newsgroups are highly related, while some
are irrelevant, generally bunched in 6 clusters. Names and clusters of the 20 Newsgroups dataset are shown in
Figure 1. The original dataset contains approximately 1000 messages per class. We use the reduced version
of the dataset that contains 100 messages in each class with a total of 2000 samples, which is known as 20
Newsgroups Mini, with no prior filtering process.

 

comp.graphics 
comp.os.ms-windows.misc 
comp.sys.ibm.pc.hardware 
comp.sys.mac.hardware 
comp.windows.x 

rec.autos 
rec.motorcycles 
rec.sport.baseball 
rec.sport.hockey 

sci.crypt 
sci.electronics 
sci.med 
sci.space 

misc.forsale 

talk.politics.misc 
talk.politics.guns 
talk.politics.mideast 

talk.religion.misc 
alt.atheism 
soc.religion.christian 

Figure 1. Distribution classes of the 20 Newsgroups dataset and clusters according to their subject relations.

We use the stemmer of Porter [25] to stem the terms of the samples for both datasets. We remove
stop words, numbers, and all punctuation marks after stemming. When the preprocessing is done, the Reuters
dataset has a total of 8120 terms in 1623 documents and the 20 Newsgroups dataset contains 25,204 terms in
2000 documents. This means that we represent the Reuters dataset as a term-document matrix with 1623 rows
and 8120 columns. The term-document matrix of the 20 Newsgroups dataset is much larger, with 2000 rows
and 25,204 columns. The ModApte-10 port of the Reuters dataset contains 16,436 terms and 9034 documents
when the train and test splits are combined.

We use the popular and well-known TFIDF scheme for weighting the terms in our term-document
matrices, which is calculated with Eq. (26), where ni,j is the number of occurrences of term ti in document

dj , |D| is the total number of documents, and |{dj : ti ∈ dj }| is the number of documents where term ti
appears.

tfidfi,j =
ni,j∑

k

nk,j
× log

|D|
|{dj : ti ∈ dj}|

(26)

4.2. Methods for comparison

We pick 5 popular and widely used dimension reduction schemes to compare with our feature extraction method.
As Jensen [14] points out, the chi-squared and correlation coefficient methods produce better feature subsets

than the document frequency method. Thus, we pick the correlation coefficient (as an entropy-based method)
and chi-squared methods as feature selectors. We choose PCA because it is known as the main feature extraction
method. The second extraction method we utilize for comparison is LSA, which is popular in text mining tasks.
The last feature extraction method compared is LDA, which is a supervised method like the AFE. We apply
these methods and the AFE on the chosen datasets to compare their effects on classification performances. The
number of features obtained by applying the selected dimension reduction techniques is given in Table 3. We see
that the number of reduced features is different for each method and dataset. These numbers are obtained by
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running the selected dimension reduction methods with their default settings and parameters. We also include
tests by setting the number of reduced features equal to the AFE for other methods in order to see if the number
of dimensions affects performance.

Table 3. Number of reduced features obtained with the selected methods.

Reuters 20 Newsgroups ModApte-10
No reduction 8121 25,205 16,436

AFE 22 20 10
Chi-squared 327 327 2020

Correlation coefficient 39 70 39
PCA 287 1423 1887
LSA 1146 1057 1173
LDA 21 19 9

We choose 7 classification algorithms of different design approaches to compare the effects of the dimension
reduction techniques on classification performances. We list the selected algorithms here:

• Naive Bayes as a simple probabilistic classifier, which is based on applying Bayes’ theorem with strong
independence assumptions [26].

• C4.5 decision tree algorithm [27] as a basic tree based classifier. We choose the confidence factor as 0.25
and the minimum number of instances per leaf as 2.

• RIPPER [28] as a rule-based learner. The minimum total weight of the instances in a rule is set to 2.0.
We choose 3-fold for pruning and 2 optimization runs.

• Ten-nearest neighbor algorithm to test instance-based classifiers. We use the 1/distance distance weighting
scheme. We also run one-nearest neighbor with default Euclidean distance calculation and no weighting
in order to evaluate the nearest neighbor algorithm with its standard settings.

• A 10-tree random forest to construct a collection of decision trees with controlled variations [29]. We set
the tree depth limit as infinite.

• Support vector machine (SVM) [30] as a kernel-based learner, which is also robust to data sparsity. We

choose the linear kernel u′*v . We set the cost parameter to 1.0 and the termination tolerance epsilon to
0.001.

• LINEAR [31] as a linear classifier that is known to be accurate, especially on large and sparse datasets.
We set the cost parameter to 1.0 and the termination tolerance epsilon to 0.01.

5. Experimental results

We evaluate the efficiency of the AFE among the other dimension reduction schemes described in Section 2 by
using 7 different classification algorithms on the selected datasets, which we introduce in Section 4.2. We utilize
Weka [32] as our test environment.
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For independent random splitting of training and test sets, a 10-fold cross-validation method is used on
the Reuters and 20 Newsgroups datasets. We quantify the results as the average precision with Eq. (27), recall

with Eq. (28), and F1 measure with Eq. (29), obtained from the 10 runs on each fold. For Eqs. (27), (28), and

(29), TP is the number of true positives, FP is the number of false positives, and FN is the number of false
negatives. For the ModApte-10 split of the Reuters dataset, we use the standard train and test splits instead
of cross-validation for fair comparison.

precision =
TP

TP + FP
(27)

recall =
TP

TP + FN
(28)

F1 =
2 × precision × recall

(precision + recall)
(29)

Table 4. Performance comparisons of the dimension reduction schemes applied before classification of the Reuters
dataset.

Without
Chi- CorrelationReuters dataset dimension AFE

squared coefficient
PCA LSA LDA

reduction

Näıve Bayes
Precision 0.738 0.932 0.821 0.726 0.564 0.656 0.723
Recall 0.708 0.932 0.808 0.649 0.481 0.519 0.580

F1 measure 0.715 0.931 0.810 0.638 0.487 0.517 0.584

C4.5
Precision 0.835 0.914 0.830 0.807 0.578 0.680 0.820
Recall 0.835 0.913 0.829 0.807 0.567 0.680 0.814

F1 measure 0.834 0.912 0.828 0.806 0.570 0.679 0.813

RIPPER
Precision 0.824 0.921 0.838 0.805 0.528 0.650 0.806
Recall 0.808 0.918 0.822 0.776 0.483 0.638 0.769

F1 measure 0.810 0.919 0.824 0.781 0.492 0.640 0.773

1-nearest neighbor
Precision 0.770 0.966 0.826 0.838 0.767 0.845 0.835
Recall 0.619 0.965 0.810 0.834 0.708 0.258 0.828

F1 measure 0.633 0.965 0.811 0.835 0.723 0.312 0.827

10-nearest neighbor
Precision 0.774 0.969 0.870 0.861 0.779 0.350 0.847
Recall 0.506 0.969 0.762 0.844 0.687 0.088 0.837

F1 measure 0.481 0.969 0.789 0.847 0.692 0.046 0.836

Random forest
Precision 0.649 0.931 0.824 0.846 0.684 0.370 0.841
Recall 0.642 0.929 0.821 0.845 0.678 0.366 0.833

F1 measure 0.635 0.929 0.819 0.844 0.672 0.357 0.832

SVM
Precision 0.911 0.969 0.913 0.871 0.819 0.761 0.857
Recall 0.900 0.969 0.909 0.855 0.781 0.610 0.839

F1 measure 0.901 0.969 0.910 0.856 0.783 0.598 0.837

LINEAR
Precision 0.934 0.838 0.893 0.869 0.867 0.792 0.858
Recall 0.932 0.852 0.892 0.868 0.866 0.739 0.847

F1 measure 0.932 0.820 0.892 0.868 0.865 0.743 0.845

Average
Precision 0.804 0.930 0.852 0.828 0.698 0.638 0.823
Recall 0.744 0.931 0.832 0.810 0.656 0.487 0.793

F1 measure 0.742 0.927 0.835 0.809 0.661 0.487 0.793

1148
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5.1. Tests using default parameters

We set up the first test using the default parameters of the selected dimension reduction methods. This re-
sults in a different number of reduced features for each method, which are given in Table 3. The classification
performances obtained from the tests using the Reuters, 20 Newsgroups, and ModApte-10 datasets are con-
secutively listed in Tables 4, 5, and 6. We see that the AFE improves the precision, recall, and F1 measure
results of naive Bayes, C4.5, RIPPER, 1-nearest neighbor, 10-nearest neighbor, and random forest classifiers in
comparison with the other dimension reduction schemes on all of the datasets. Prior to the SVM, the AFE gives
the highest precision, recall, and F1 measure values among other methods on the Reuters and 20 Newsgroups
datasets, but the chi-squared method and application of no reduction show better performance than the AFE
on the ModApte-10 split. Prior to the LINEAR classifier, the AFE provides the highest precision, recall, and
F1 measure values on both the 20 Newsgroups and ModApte-10 split datasets, while it is only better than LSA
on the Reuters dataset.

Table 5. Performance comparisons of the dimension reduction schemes applied before classification of the 20 Newsgroups

dataset.

Without
Chi- Correlation20 Newsgroups dataset dimension AFE

squared coefficient
PCA LSA LDA

reduction

Näıve Bayes
Precision 0.559 0.899 0.612 0.481 0.514 0.577 0.419
Recall 0.521 0.898 0.605 0.446 0.470 0.504 0.298

F1 measure 0.527 0.897 0.597 0.436 0.472 0.516 0.289

C4.5
Precision 0.501 0.869 0.506 0.446 0.438 0.453 0.407
Recall 0.484 0.869 0.498 0.438 0.432 0.444 0.353

F1 measure 0.490 0.869 0.500 0.439 0.434 0.447 0.363

RIPPER
Precision 0.504 0.878 0.515 0.471 0.405 0.413 0.511
Recall 0.417 0.877 0.451 0.391 0.385 0.407 0.303

F1 measure 0.433 0.877 0.467 0.391 0.391 0.408 0.343

1-nearest neighbor
Precision 0.701 0.923 0.511 0.415 0.732 0.774 0.344
Recall 0.108 0.922 0.483 0.396 0.091 0.222 0.302

F1 measure 0.108 0.922 0.489 0.402 0.081 0.278 0.311

10-nearest neighbor
Precision 0.442 0.940 0.553 0.488 0.330 0.525 0.421
Recall 0.082 0.939 0.449 0.431 0.066 0.065 0.356

F1 measure 0.056 0.939 0.463 0.444 0.037 0.036 0.372

Random forest
Precision 0.535 0.913 0.473 0.392 0.183 0.227 0.344
Recall 0.459 0.912 0.466 0.378 0.173 0.209 0.306

F1 measure 0.472 0.912 0.465 0.382 0.171 0.211 0.313

SVM
Precision 0.731 0.932 0.664 0.581 0.714 0.692 0.566
Recall 0.695 0.930 0.614 0.496 0.696 0.644 0.377

F1 measure 0.705 0.930 0.631 0.521 0.701 0.659 0.409

LINEAR
Precision 0.772 0.950 0.600 0.545 0.703 0.677 0.557
Recall 0.749 0.949 0.597 0.523 0.703 0.671 0.394

F1 measure 0.754 0.948 0.597 0.525 0.702 0.673 0.426

Average
Precision 0.593 0.851 0.540 0.472 0.516 0.532 0.449
Recall 0.547 0.912 0.582 0.501 0.486 0.505 0.409

F1 measure 0.505 0.864 0.537 0.456 0.438 0.468 0.376
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Table 6. Performance comparisons of the dimension reduction schemes applied before classification of the Reuters

ModApte-10 split dataset.

Without
Chi- CorrelationModApte-10 split dataset dimension AFE

squared coefficient
PCA LSA LDA

reduction

Näıve Bayes
Precision 0.860 0.918 0.891 0.867 0.671 0.541 0.797
Recall 0.407 0.911 0.750 0.755 0.628 0.547 0.743

F1 measure 0.540 0.911 0.803 0.790 0.612 0.508 0.732

C4.5
Precision 0.867 0.949 0.881 0.850 0.839 0.840 0.819
Recall 0.870 0.949 0.882 0.851 0.841 0.840 0.808

F1 measure 0.868 0.948 0.881 0.849 0.840 0.840 0.805

RIPPER
Precision 0.874 0.950 0.867 0.841 0.868 0.840 0.779
Recall 0.875 0.949 0.868 0.841 0.864 0.832 0.777

F1 measure 0.872 0.949 0.863 0.836 0.865 0.836 0.767

1-nearest neighbor
Precision 0.754 0.957 0.764 0.854 0.730 0.754 0.787
Recall 0.542 0.956 0.688 0.851 0.695 0.641 0.780

F1 measure 0.484 0.956 0.659 0.852 0.667 0.652 0.775

10-nearest neighbor
Precision 0.741 0.962 0.728 0.875 0.679 0.824 0.821
Recall 0.468 0.962 0.483 0.876 0.538 0.522 0.810

F1 measure 0.359 0.961 0.369 0.875 0.460 0.516 0.807

Random forest
Precision 0.828 0.918 0.868 0.887 0.735 0.566 0.785
Recall 0.837 0.911 0.872 0.890 0.752 0.602 0.780

F1 measure 0.825 0.911 0.863 0.888 0.719 0.550 0.775

SVM
Precision 0.927 0.878 0.914 0.890 0.881 0.858 0.828
Recall 0.929 0.905 0.917 0.893 0.886 0.864 0.810

F1 measure 0.927 0.882 0.914 0.891 0.883 0.857 0.808

LINEAR
Precision 0.926 0.953 0.907 0.893 0.920 0.824 0.830
Recall 0.925 0.945 0.911 0.895 0.921 0.810 0.808

F1 measure 0.925 0.937 0.908 0.893 0.920 0.790 0.808

Average
Precision 0.847 0.936 0.853 0.870 0.790 0.756 0.806
Recall 0.732 0.936 0.796 0.857 0.766 0.707 0.790

F1 measure 0.725 0.932 0.783 0.859 0.746 0.694 0.785

For the Reuters dataset, the best precision, recall, and F1 measure values (both 96.9%) are achieved with

the AFE applied before the 10-nearest neighbor and SVM classifiers. The following highest precision is 96.6%,
and the recall and F1 measures are 96.5%, achieved with the AFE applied before the 1-nearest neighbor. For
the 20 Newsgroups dataset, the best precision is 95.0%, the best recall is 94.9%, and the best F1 measure is
94.8%, all achieved with the AFE applied before LINEAR. The following highest precision of 94.9% and recall
and F1 measures of 93.9% are achieved again with the AFE prior to the 10-nearest neighbor classifier. For the
ModApte-10 split dataset, the best precision is 96.2%, the best recall is 96.2%, and the best F1 measure is 96.1%,
all achieved by applying the AFE before the 10-nearest neighbor classifier. The following highest precision of
95.7% and recall and F1 measures of 95.6% are achieved again with the AFE prior to the 10-nearest neighbor
classifier.

If we look at the average performances of the classifiers among the dimension reduction methods on the
Reuters dataset, the highest average precision of 93.0%, recall of 93.1%, and F1 measure of 92.7% are achieved
with the AFE, followed by the correlation coefficient method with 85.2% precision, 83.2% recall, and 80.9%
F1 measure scores. Focusing on the 20 Newsgroups dataset, the AFE is by far the best with 84.1% average
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precision, 91.2% recall, and 86.4% F1 measure. The second-best average F1 measure is 53.7% by the chi-squared
feature selection. On the ModApte-10 split, highest average precision and recall of 93.6% and F1 measure of
93.2% is achieved with the AFE, followed by the 85.9% F1 measure score of the correlation coefficient method.

5.2. Tests with equal number of reduced features

We set up the second test by setting the number of reduced features equal to the number of classes in the
datasets for the selected dimension reduction methods. This makes a fair comparison of the AFE with other
methods and tests, whether the number of reduced features affects the classifier’s performances or not. We set
the number of reduced features to 21 for the Reuters, 20 for 20 Newsgroups, and 10 for ModApte-10 datasets.
LDA is excluded from this test since it outputs C − 1 number of extracted features as linear discriminants for
the classes.

The classification performance results of this test are listed in Tables 7-9, each for one of the 3 datasets.
We see that the AFE results in the highest performances for each classifier on all of the datasets, except for

Table 7. Performance comparisons of the dimension reduction schemes, each having 21 reduced features, applied before

classification of the Reuters dataset.

Reuters dataset AFE
Chi- Correlation

PCA LSAsquared coefficient

Näıve Bayes
Precision 0.938 0.650 0.669 0.798 0.843
Recall 0.931 0.603 0.572 0.771 0.816

F1 measure 0.930 0.595 0.559 0.769 0.817

C4.5
Precision 0.923 0.743 0.774 0.695 0.765
Recall 0.913 0.743 0.767 0.670 0.743

F1 measure 0.912 0.727 0.759 0.663 0.739

RIPPER
Precision 0.926 0.713 0.747 0.716 0.755
Recall 0.918 0.717 0.720 0.643 0.712

F1 measure 0.917 0.692 0.707 0.644 0.712

1-nearest neighbor
Precision 0.966 0.735 0.776 0.818 0.876
Recall 0.965 0.744 0.776 0.816 0.873

F1 measure 0.965 0.734 0.775 0.816 0.874

10-nearest neighbor
Precision 0.972 0.761 0.808 0.838 0.890
Recall 0.969 0.766 0.795 0.819 0.874

F1 measure 0.968 0.748 0.789 0.816 0.874

Random forest
Precision 0.938 0.736 0.800 0.802 0.852
Recall 0.929 0.744 0.789 0.786 0.832

F1 measure 0.927 0.727 0.783 0.781 0.829

SVM
Precision 0.972 0.753 0.797 0.825 0.879
Recall 0.969 0.759 0.795 0.801 0.858

F1 measure 0.968 0.737 0.781 0.793 0.854

LINEAR
Precision 0.823 0.744 0.782 0.844 0.759
Recall 0.852 0.765 0.791 0.831 0.789

F1 measure 0.818 0.740 0.774 0.826 0.754

Average
Precision 0.932 0.729 0.769 0.792 0.827
Recall 0.931 0.730 0.751 0.767 0.812

F1 measure 0.926 0.713 0.741 0.764 0.807
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PCA applied before LINEAR, which gives better results than the AFE on the Reuters dataset. On the Reuters
dataset, the best precision is 97.2%, recall is 96.9%, and F1 measure is 96.8%, as scored by the AFE applied
before the 10-nearest neighbor classifier. The nearest F1 measure of the compared methods is 87.4%, achieved
by LSA with the 10-nearest neighbor classifier. For the 20 Newsgroups dataset, the best precision is 95.3%, recall
is 94.8%, and F1 measure is 94.7% using the AFE with the LINEAR classifier. The chi-squared and correlation
coefficient methods give the worst results on this dataset with 20 selected features; their F1 measures are
around 30%. This shows us that selecting too few features out of the original feature set is not suitable for the
20 Newsgroups dataset. PCA and LSA score around 53% F1 measures on average by extracting 20 features,
which is about 20% better than the feature selection methods but about 40% worse than the AFE. The highest
F1 measure of the compared methods is 59.8%, as scored by LSA with the SVM. For the ModApte-10 split
dataset, the best precision and recall is 96.2% and the F1 measure is 96.1% by applying the AFE before the
10-nearest neighbor classifier. The nearest F1 measure of the compared methods is 91.4%, achieved by PCA
with the 10-nearest neighbor classifier.

Table 8. Performance comparisons of the dimension reduction schemes, each having 20 reduced features, applied before

classification of the 20 Newsgroups dataset.

20 Newsgroups dataset AFE
Chi- Correlation

PCA LSAsquared coefficient

Näıve Bayes
Precision 0.910 0.350 0.374 0.575 0.598
Recall 0.898 0.301 0.295 0.556 0.587

F1 measure 0.897 0.281 0.280 0.540 0.577

C4.5
Precision 0.881 0.370 0.365 0.446 0.452
Recall 0.869 0.304 0.321 0.438 0.439

F1 measure 0.868 0.297 0.326 0.432 0.436

RIPPER
Precision 0.898 0.334 0.447 0.547 0.540
Recall 0.877 0.251 0.289 0.421 0.412

F1 measure 0.879 0.245 0.303 0.439 0.434

1-nearest neighbor
Precision 0.923 0.394 0.322 0.498 0.532
Recall 0.922 0.291 0.292 0.492 0.530

F1 measure 0.922 0.302 0.302 0.494 0.530

10-nearest neighbor
Precision 0.944 0.414 0.386 0.594 0.586
Recall 0.939 0.318 0.333 0.584 0.607

F1 measure 0.939 0.317 0.341 0.564 0.571

Random forest
Precision 0.919 0.380 0.339 0.525 0.562
Recall 0.912 0.288 0.291 0.519 0.551

F1 measure 0.912 0.291 0.300 0.510 0.546

SVM
Precision 0.936 0.379 0.503 0.621 0.622
Recall 0.930 0.303 0.350 0.584 0.607

F1 measure 0.930 0.296 0.371 0.580 0.598

LINEAR
Precision 0.953 0.340 0.428 0.597 0.562
Recall 0.948 0.323 0.364 0.604 0.566

F1 measure 0.947 0.299 0.359 0.582 0.525

Average
Precision 0.921 0.370 0.396 0.550 0.557
Recall 0.912 0.297 0.317 0.525 0.537

F1 measure 0.912 0.291 0.323 0.518 0.527
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Table 9. Performance comparisons of the dimension reduction schemes, each having 10 reduced features, applied before

classification of the Reuters ModApte-10 split dataset.

ModApte-10 split dataset AFE
Chi- Correlation

PCA LSAsquared coefficient

Näıve Bayes
Precision 0.918 0.755 0.859 0.896 0.881
Recall 0.911 0.516 0.657 0.892 0.869

F1 measure 0.911 0.504 0.706 0.893 0.869

C4.5
Precision 0.949 0.788 0.798 0.886 0.886
Recall 0.949 0.809 0.806 0.881 0.883

F1 measure 0.948 0.795 0.796 0.879 0.883

RIPPER
Precision 0.950 0.742 0.747 0.872 0.889
Recall 0.949 0.769 0.765 0.869 0.890

F1 measure 0.949 0.748 0.740 0.866 0.887

1-nearest neighbor
Precision 0.957 0.729 0.752 0.900 0.895
Recall 0.956 0.737 0.761 0.895 0.890

F1 measure 0.956 0.732 0.755 0.896 0.891

10-nearest neighbor
Precision 0.962 0.796 0.799 0.916 0.915
Recall 0.962 0.806 0.809 0.915 0.914

F1 measure 0.961 0.797 0.800 0.914 0.913

Random forest
Precision 0.961 0.733 0.773 0.904 0.905
Recall 0.960 0.742 0.782 0.900 0.907

F1 measure 0.960 0.736 0.776 0.899 0.904

SVM
Precision 0.961 0.804 0.796 0.907 0.892
Recall 0.959 0.814 0.808 0.891 0.891

F1 measure 0.957 0.802 0.793 0.870 0.875

LINEAR
Precision 0.953 0.790 0.803 0.895 0.765
Recall 0.945 0.808 0.813 0.894 0.792

F1 measure 0.937 0.785 0.804 0.880 0.736

Average
Precision 0.951 0.767 0.791 0.897 0.879
Recall 0.949 0.750 0.775 0.892 0.880

F1 measure 0.947 0.737 0.771 0.887 0.870

Table 10. A simple 2-class dataset.

F1 F2 F3 F4 F5 F6 F7 F8

Class 1
Sample1 1 1 1 0 0 0 0 0
Sample2 0 1 0 1 0 0 0 1
Sample3 0 2 0 0 1 0 0 0

Class 2
Sample4 0 0 0 0 1 1 0 0
Sample5 0 0 0 0 1 0 1 1
Sample6 0 1 0 0 1 1 0 0

6. Discussion

The AFE depends on the class membership probabilities of the samples, depending on the features that they
contain. We weight the features and observe their probabilistic distribution over the classes. Projecting and
summing up the probabilities of features to the classes gives us the impact of each extracted abstract feature
to each class. This extraction procedure reveals the evidence in the training samples about the classes. These
evidences are actually hidden in the features.
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In this section, we give a brief example to visualize the abstract features in a 2-class problem. We also
visualize the abstract features extracted from our selected datasets in the experimental results.

6.1. Abstract features of a sample two-class problem

Assume that we have a 2-class dataset with 6 samples and 8 features. Let the values of the features be as in
Table 10. Applying the AFE on this dataset gives us the extracted features listed in Table 11. If we visualize
Table 11 on Figure 2, we can easily track the evidences of class memberships hidden in the samples. The
extracted abstract features can be seen as the membership probabilities of samples to the classes.
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Figure 2. Visualization of the extracted abstract features for the given 2-class dataset.

Table 11. Values of the extracted features for the given 2-class dataset.

AbstractFeature1 AbstractFeature2

Sample1 0.918 0.082
Sample2 0.718 0.282
Sample3 0.585 0.415
Sample4 0.137 0.863
Sample5 0.289 0.711
Sample6 0.313 0.687
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As we have 2 classes in our example, we have 2 abstract features extracted with the AFE, whose values
are given in Table 11. In order to observe the class separabilities, we apply PCA an LSA to the sample dataset
and extract 2 features with each method. The extracted values of the samples in our dataset with the AFE,
PCA, and LSA are compared in Figure 3. When we observe the distribution of the samples, we see that
the abstract features extracted with the AFE have the most definite and distinct discriminant and, thus, the
clearest separability. Features extracted with PCA can separate linearly, but its discriminant is not as clear
and apart as the AFE’s. Samples cannot be linearly separated using the extracted features of LSA. Therefore,
the discriminant of LSA is quadratic, which reduces the performances of classifiers because of its complexity.
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Figure 3. Class discriminants and samples with extracted features using the AFE, PCA, and LSA for the given 2-class

dataset.

6.2. Abstract features extracted from the experimental results

The averages of the abstract features extracted from the Reuters, 20 Newsgroups, and ModApte-10 datasets
are given in Figures 4, 5, and 6. We see that each abstract feature gets the highest score in its class in our
experimental tests. The consequent scored features show the likelihood of the samples in that class to other
classes.
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Figure 4. Averages of the abstract features extracted from the Reuters dataset, each obtained from the samples that

belong to the corresponding class.
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Figure 5. Averages of the abstract features extracted from the 20 Newsgroups dataset, each obtained from the samples

that belong to the corresponding class.
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Figure 6. Averages of the abstract features extracted from the ModApte-10 split of the Reuters dataset, each obtained

from the samples that belong to the corresponding class.

We can say that if the values of the abstract features are close to each other, the class separability is
low. Contrarily, distinct values between the abstract features show us that the classes of the dataset are easy
to distinguish. Examining the abstract features extracted from the Reuters, 20 Newsgroups, and ModApte-10
datasets, we see that the 20 Newsgroups dataset has the highest class separability, followed by the Reuters
dataset. The class separability of the ModApte-10 dataset is the lowest compared with previous datasets.

7. Conclusions

We introduce a feature extraction method that summarizes the features of the samples, where the extracted
features aggregate information about how much evidence there is in the features of the training samples for
each class. In order to form the abstract features, high dimensional features of the samples are projected onto
a new feature space having dimensions equal to the number of classes.

We choose text classification to evaluate the AFE and compare it with other popular feature selection
and feature extraction schemes. Seven classifiers of different types are used to compensate the dependencies
on the algorithm types and to effectively test the behaviors of the dimension reduction schemes. We examine
performances of the classifiers on 3 standard and popular text collections: the Reuters-21578, 20 Newsgroups,
and the ModApte-10 split of Reuters. We work on a vector space model, which causes an excess number of
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features. TFIDF term weighting is used to score the input features of the samples. Using the AFE, we project
the words in documents onto a new feature space having dimensions equal to the number of classes. Comparison
and test results show that the AFE scores the highest F1 measure on the Reuters dataset with 96.9%, the 20
Newsgroups dataset with 94.8%, and the ModApte-10 with 96.1%. This means that the AFE achieves a better
F1 measure of 3.7% on the Reuters, 19.4% on the 20 Newsgroups, and 3.4% on the ModApte-10 than its nearest
following non-AFE method. Looking at the average F1 measures of the classifiers, we see that the AFE’s score
is 9.2% higher on Reuters, 33.0% higher on 20 Newsgroups, and 7.3% higher on ModApte-10 than the next best
scored method.

Not only does AFE make it possible to prepare datasets for classification in an effective way, but it also
gives information about class separability. The training samples include evidences about the classes. These
evidences are hidden in the features. What the AFE reveals are these evidences. In other words, the abstract
features extracted by the AFE can be seen as the membership probabilities of the samples to the classes. These
features also describe the likelihood of a sample to other classes. We can infer that if the values of the abstract
features are close to each other, class separability is low. As the distances between the abstract features increase,
it becomes easier to distinguish the classes. Hence, we can comprehend the separability of the classes by using
the AFE.
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